Экспрессия в клетках бактерий рекомбинантных днк

Секретная генетическая информация

Вся наследственная информация закодирована в дезоксирибонуклеиновой кислоте (ДНК). Именно в ней содержится инструкция, определяющая рост, деление и функциональность клеток. Например, несмотря на очень маленькие размеры, для бактерий характерно достаточное разнообразие форм:

  • шаровидная;
  • палочковидная;
  • изогнутая;
  • закручена в тройную спираль.

И благодаря генетической информации, заключенной в спирали ДНК, дочерние клетки будут принимать форму материнской. Природа так методично отработала механизм размножения, что практически нет сбоев. В процессе деления образуется дочерняя спираль, которая идентична по своей хромосомной структуре материнской. Процесс этот называется репликацией.

Возможность размножаться – это ведущее свойство клетки. Чтобы качественно выполнять возложенную на нее функцию, она должна иметь достаточно сложное строение. На деле так оно и есть – каждая молекула содержит в себе более 1000 различных соединений.

Внутри молекул химические реакции происходят сами по себе достаточно медленно. Поэтому, чтобы живые организмы на Земле не прекратили свое существование, молекулы оснащены специальными катализаторами (ферментами). К сожалению, универсального фермента нет, и каждый отвечает только за проведение определенной химической реакции.

Врачи и ученые отмечают значимость экспрессии в клетках бактерий рекомбинантной ДНК для биомедицинских исследований и разработки новых терапий. Они подчеркивают, что использование бактерий, таких как Escherichia coli, позволяет эффективно производить белки, необходимые для создания вакцин и лекарств. Это открывает новые горизонты в лечении различных заболеваний, включая онкологические и инфекционные.

Специалисты также акцентируют внимание на том, что рекомбинантные технологии позволяют не только получать терапевтические белки, но и изучать механизмы их действия на клеточном уровне. Это способствует более глубокому пониманию патогенеза заболеваний и разработке целевых методов лечения. Врачи уверены, что дальнейшие исследования в этой области приведут к значительным прорывам в медицине и улучшению качества жизни пациентов.

Клонирование ДНК - как и зачем это делаютКлонирование ДНК – как и зачем это делают

Процесс копирования

В теоретических конструкциях, разработанных микробиологами в те годы, когда изучать сложные молекулярные процессы экспериментальным путем было очень сложно или практически невозможно, копирование дезоксирибонуклеиновой кислоты может осуществляться тремя способами:

  1. Консервативный, при котором двойная родительская спираль не раскручивается, а двойная дочерняя спираль полностью образовывается из нового материала.
  2. Дисперсивный, при котором родительская макромолекула распадается на фрагменты, а дочерние формируются на нуклеотидных последовательностях этих фрагментов как на матрицах.
  3. Полуконсервативный. Согласно этой модели, двойная спираль раскручивается, и каждая цепь спирали служит матрицей для дочерних ДНК. Формируется так называемый гибрид старой макромолекулы и цепи, созданной из новых компонентов.

Когда в 1957 году был найден способ отслеживания процессов, происходящих в бактериальной ДНК при ее репликации, было установлено, что дезоксирибонуклеиновая кислота реплицируется полуконсервативным путем, то есть через раскручивание и использование раскрученных участков в качестве матриц для синтеза новых макромолекул.

Сам процесс репликации бактериальной ДНК очень схож с репликацией ДНК остальных органических механизмов. Происходит он по следующей схеме:

  1. ДНК-хеликазы раскручивают и разрывают двойную спираль, двигаясь вдоль сахарофосфатного остова дезоксирибонуклеиновой кислоты.
  2. Ферменты полимеразы катализируют реакции присоединения к однонитевым фрагментам дезоксирибонуклеиновой кислоты комплиментарных нуклеиновых оснований.

После репликации происходит удвоение всех основных частей клетки: органелл, цитоплазматической мембраны, клеточной стенки, и бактериальная клетка распадается надвое.

Ответ

Экспрессия в клетках бактерий рекомбинантной ДНК является важной темой в молекулярной биологии и биотехнологии. Учёные отмечают, что использование бактерий, таких как Escherichia coli, для производства белков позволяет значительно ускорить процесс получения необходимых биомолекул. Благодаря рекомбинантной ДНК технологии, можно встраивать гены, отвечающие за синтез целевых белков, в геном бактерий. Это открывает новые горизонты в разработке вакцин, ферментов и терапевтических белков. Однако, несмотря на успехи, существуют и вызовы, такие как необходимость оптимизации условий культуры и предотвращение деградации белков. Исследования в этой области продолжают развиваться, что обещает новые достижения в медицине и промышленности.

Метод рекомбинантных плазмид за 3 минуты! | Ксения Напольская | ЕГЭ по биологии | 100балльныйМетод рекомбинантных плазмид за 3 минуты! | Ксения Напольская | ЕГЭ по биологии | 100балльный

Проверено экспертом

1. Бактериальная наследственная информация носит название нуклеоида,располагается в центре клетки и представляет собой кольцевую молекулу ДНК.

2. У некоторых бактерий появляюся только зачатки полового процесса,поэтому полноценным половым размножением считать это всё-таки нельзя. Половой процесс заключается в следующем: две бактерии конъюгируют,то есть максимально близко подходят друг к другу,между ними образовывается канал,через который организмы обмениваются частью молекулы ДНК,тем самым превнося новую генетическую информацию в свой генотип.

3. В отличие от растений,бактерий образуют споры не для размножения,а в случае воздействия неблагоприятных условий окружающей среды — сильной жары,сильного холода,нехватки воды и т.д.,поэтому функция бактериальных спор заключается именно в защите и обеспечении выживаемости.

4. Мезосомы — это складки клеточной мембраны бактериальной клетки. В настоящее время функция их ещё не совсем определена,но считается,что они участвуют в делении клетки и образовании спор,синтезируют энергию и служат местом прикрепления нуклеоида.

Долгое время ученые всего мира вели жаркие дискуссии относительно того, какой структурой в клетке бактерий обладает молекула ДНК, и где содержится вся наследственная информация. Произведя множество опытов, они все же пришли к выводу, что генетический код зашифрован в молекулах ДНК. Но в отличие от многоклеточных организмов их структура имеет свои особенности.

Хранение клеточного генетического материала

Как у всех представителей органической жизни, наследственная (генетическая) информация бактерий хранится в их ДНК. Что такое генетическая информация? Какая структура хранит наследственную информацию?

  1. Генетическая информация – это определенная последовательность нуклеотидов. Другого секрета в ядре нет. Копируя эту последовательность, клетка синтезирует самые разнообразные белки. Они же решают все остальные вопросы организма, начиная с организационных, заканчивая снабжением клетки строительным материалом.
  2. Макромолекула ДНК – четыре нуклеиновых основания (аденин, гуанин, тимин и цитозин), объединенные в двойную спираль сахаром дезоксирибозой и остатками фосфорной кислоты. Именно нуклеиновые основания кодируют последовательность сборки белков независимо от того, есть оформленное ядро в клетке или нет.

Дезоксирибонуклеиновая кислота бактерий имеет такое же строение, как молекулы – хранители наследственной информации всех остальных живых существ на планете. Так же, как все другие органические клетки, бактерия образует из ДНК хромосомы. Но это не значит, что других отличий нет.

Фундаментальным отличием бактерии является то, что у нее нет клеточного ядра, наследственная информация бактерии не собрана в клеточное ядро, это просто кольцевая молекула, которая прилеплена к одной из стенок цитоплазматической мембраны.

Однако то обстоятельство, что ядра нет, не препятствует активным процессам репликации и трансляции с использованием этого хранителя наследственной информации. Чтобы понять, как происходит передача информации, нужно понимать, что такое хромосомы, гены и клеточное ядро.

Ген – участок макромолекулы, на котором записана последовательность нуклеотидов, позволяющая собирать один определенный вид белка. Другой информации в генах нет.
Хромосома – комбинация цепи ДНК с белками гистонами, которые ее структурируют и придают ей определенную форму перед тем, как клетка начинает делиться. В фазе, когда деление не происходит, в клетке (или в ядре, если речь идет о ядерных эукариотах) как таковых хромосом нет.
Клеточное ядро – это клеточная структура, которая содержит наследственную информацию, структурированную в хромосому, когда клетка готовится к делению. В ней инициируется сам процесс деления

Важно помнить, что у бактерий клеточного ядра нет.

Если в эукариотической клетке при делении используются обособленные, специально формирующиеся для удобства деления структуры, то как же происходит размножение бактерий в условиях неоформленного кажущегося сумбура в отсутствие клеточного ядра?

Повреждение и репарация ДНКПовреждение и репарация ДНК

Строение вирусов

Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.

Бактерия – клетка без ядра

Новые открытия в строении клеток прокариот: что бактериальные клетки имеют в своем составе?

Бактерии: размножение, способы, рост, факторы роста. фото

Особенности кольцевой молекулы днк прокариотической клетки

Строение бактерий

Бактерии. строение бактериальной клетки. формы. фото

Бактерия – клетка без ядра

Особенности генетики бактерий. - основы микробиологии

Способы размножения истинных бактерий

Днк бактериальная
Экспрессия в клетках бактерий рекомбинантных днк

Рис. 3. Строение вируса

Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.

Дезоксирибонуклеиновая кислота бактериальной клетки

Бактериальная молекула ДНК хоть изображается как кольцевая довольно объемная структура, которая располагается в центре клетки, на самом деле представляет собой довольно компактное образование, локализованное на ограниченных участках цитоплазмы.

Ввиду отсутствия ядерной мембраны, которая бы отгораживала скомпонованную бактериальную макромолекулу от других клеточных структур, генетический аппарат безъядерных организмов нельзя ассоциировать с генетическим аппаратом эукариотов, поэтому генетический аппарат прокариотов назвали нуклеоид.

Характерные черты нуклеоида:

  1. ДНК, в которой содержится нескольких тысяч генов.
  2. Гены расположены линейно и называются хромосомой. Хромосома бактерии – это линейная совокупность ее генов.
  3. Макромолекула также сворачивается белками, похожими на эукариотические гистоны.

Нуклеоид крепится к цитоплазматической мембране в тех точках, где начинается и заканчивается репликация (самокопирование).

Бактериальная хромосома

В большинстве случаев хромосомы нуклеоида бактерий имеют замкнутую кольцевую форму. Значительно реже встречаются линейные хромосомы. В любом случае эти структуры состоят из одной молекулы ДНК, которая содержит набор генов, необходимых для выживания бактерии.

Экспрессия в клетках бактерий рекомбинантных днк

Хромосомная ДНК укомплектована в виде суперспирализованных петель. Количество петель на хромосому варьирует от 12 до 80. Каждая хромосома является полноценным репликоном, так как при удвоении ДНК копируется целиком. Начинается этот процесс всегда из точки начала репликации (OriC), которая прикреплена к плазматической мембране.

Суммарная длина молекулы ДНК в хромосоме на несколько порядков превышает размеры бактерии, поэтому возникает необходимость в ее упаковке, но при сохранении функциональной активности.

В хроматине эукариот эти задачи выполняют основные белки — гистоны. Нуклеоид бактерий имеет в своем составе ДНК-связывающие белки, которые отвечают за структурную организацию генетического материала, а также влияют на экспрессию генов и репликацию ДНК.

К нуклеоид-ассоциированым белкам относятся:

  • гистоноподобные белки HU, H-NS, FIS и IHF;
  • топоизомеразы;
  • белки семейства SMC.

Последние 2 группы оказывают наибольшее влияние на суперспирализацию генетического материала.

Экспрессия в клетках бактерий рекомбинантных днк

Нейтрализация отрицательных зарядов хромосомной ДНК осуществляется за счет полиаминов и ионов магния.

Передача генетического материала между организмами

Существуют пути передачи наследственного материала между бактериями. К ним относятся:

  • трансформация – прямая передача фрагмента ДНК донора реципиенту; характерна внутривидовая трансформация, межвидовая реализуется крайне редко;
  • трансдукция – передача наследственного материала между бактериями посредством фагов;
  • конъюгация – перенос генного материала бактериальной клеткой-донором, несущей F-плазмиду (половой фактор) реципиенту.

Передача наследственного материала между организмами, не состоящими в цепочке «предок – потомок», называют горизонтальным переносом, а наследование генетического материала от своего предка – вертикальным переносом.

Экспрессия в клетках бактерий рекомбинантных днк

Явление горизонтального переноса генетического материала было впервые описано в 1959 году японскими микробиологами на примере передачи невосприимчивости к антибиотикам различных бактерий. Дальнейшие исследования показали, что горизонтальный перенос наследственного материала является характерной чертой и важным эволюционным механизмом прокариотов и появился он вместе с самими бактериями.

Если генетику интересует вертикальный перенос, то генная инженерия занимается вопросами искусственного горизонтального переноса.

Спорообразование

Бактерии размножаются спорами, которые образуются при наступлении неблагоприятных условий. Спорообразование – это не только способ размножения. Внутри споры создается особая среда, уменьшается содержание воды, приостанавливаются процессы жизнедеятельности. В таком состоянии спорам не страшны ни высокие температуры, ни ионизирующее излучение, ни воздействие химических веществ.

Услышав о том, что микробы способны формировать особые структуры – споры, многие думают, что это еще один вариант того, как размножаются бактерии. Однако это не так.

Роль молекулы днк в бактериальной клетке: просто о сложном

Бактерии

Новые открытия в строении клеток прокариот: что бактериальные клетки имеют в своем составе?

Бактерии

Бывают ли хромосомы у бактерий?

Неклеточные формы жизни. вирусы и бактериофаги

Особенности кольцевой молекулы днк прокариотической клетки

Бывают ли хромосомы у бактерий?

Бактерии. строение бактериальной клетки. формы. фото

Особенности генетики бактерий. - основы микробиологии

Спора – это лишь временное состояние покоя клетки, в котором она способна переживать неблагоприятные условия среды. Иногда даже десятки лет. С процессами воспроизведения потомства это никоим образом не связано.

Биологическая роль нуклеоида

В первую очередь нуклеоид необходим бактериям для того, чтобы хранить и передавать наследственную информацию, а также реализовывать ее на уровне клеточного синтеза. Иными словами, биологическая роль этого образования такая же, как у ДНК.

Другие функции нуклеоида бактерий включают:

  • локализацию и компактизацию генетического материала;
  • функциональную упаковку ДНК;
  • регуляцию метаболизма.

Структурирование ДНК не только позволяет молекуле уместиться в микроскопической клетке, но и создает условия для нормального протекания процессов репликации и транскрипции.

Особенности молекулярной организации нуклеоида создают условия для контроля клеточного метаболизма путем изменения конформации ДНК. Регуляция происходит за счет выпетливания определенных участков хромосомы в цитоплазму, что делает их доступными для ферментов транскрипции, или наоборот, втягивания внутрь.

Защитная система «стоп-вирус»

Казалось бы, нет злоумышленников, которые могут атаковать такую крошку, как бактерия. Нет врага, способного поселиться внутри одноклеточного организма. Оказывается, есть. И называется он вирусом.

Этот инфекционный агент не имеет оформленной клеточной структуры и может вести активную жизнедеятельность только внутри живых клеток. В том числе и внутри бактерий.

Тщательные научные эксперименты показали, что пробить клеточную оболочку для вируса не составляет никакого труда благодаря своеобразному буру. Он представляет собой белковое копье с наконечником из иона железа.

Нуклеиновая кислота, впрыснутая вирусом, молниеносно распространяется по всему микроорганизму. Вирусные частички очень быстро разрушают его. И если бы отсутствовал защитный механизм, то бактерия очень быстро погибла.

«Малыши» выработали свою охранную систему, которая называется бактериальным иммунитетом. С ее помощью микроорганизм фиксирует все данные касательно вирусов. Впоследствии он использует ее для обороны от атакующих противников.

Бактериальная хромосома имеет четкую последовательность спирали ДНК, где определенные участки попеременно повторяются. Если иммунная защита обнаруживает присутствие в клетке чужеродной ДНК, то включается механизм уничтожения пришельца. Разрушение вражеского компонента происходит с помощью особого белкового комплекса.

Всякая система может иногда давать сбои. Нет исключений и у иммунной защиты бактерий. Иногда ДНК вируса повреждает спираль ДНК микроба, и возникает так называемое аутоиммунное заболевание. Справедливости ради следует отметить, что такие инциденты достаточно редки и являются скорее исключением из правил.

Функции молекулы ДНК

Функции ДНК – хранение и передача наследственной информации.

Хранение наследственной информации. Порядок расположения нуклеотидных остатков в молекуле ДНК определяет последовательность аминокислот в молекуле белка. В молекуле ДНК зашифрована вся информация о признаках и свойствах нашего организма.

Передача наследственной информации следующему поколению. Эта функция осуществляется, благодаря способности молекулы ДНК к самоудвоению – репликации. ДНК может распадаться на две комплементарные цепочки, и на каждой из них на основе того же принципа комплементарности восстановится исходная последовательность нуклеотидов.

Инцистирование

Еще одним способом защиты от неблагоприятных условий и способом размножения служит образование цист. Они представляют собой пузырьки с толстыми оболочками. В состоянии цисты бактерии могут находиться долгое время. При этом они не погибают от температур более 200 градусов. С наступлением обычных условий бактерия выходит из оболочки и начинает обычное бинарное деление.

Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

Рис. 1. На фото бактериальная клетка в стадии деления.

Генетические мутации и рекомбинации у микроорганизмов

Генотипическая (наследственная) изменчивость прокариотов может быть связана с мутациями – изменениями расположения нуклеотидов в ДНК, их частичной или полной утратой. Следствием мутации является перестройка всех генов генома, что внешне проявляется в появлении или исчезновении характерных признаков.

Рекомбинация генома у всех организмов, от прокариотов до человека, представляет собой изменение местоположения отдельных генов в пределах хромосомы либо в результате проникновения в клетку донорской ДНК.

Экспрессия в клетках бактерий рекомбинантных днк

Рекомбинации прокариотов подразделяются на:

  • законные – осуществляются только при наличии протяженных участков ДНК в рекомбинируемой клетке бактерии;
  • незаконные – не требуют наличия протяженного участка ДНК, осуществляются при помощи is-элементов, имеющих липкие концы, что позволяет быстро встраиваться в клетку микроорганизма.

Для осуществления генетических рекомбинаций в клетке прокариота требуется участие ряда ферментов.

Вездесущие микроорганизмы в генной инженерии

Генная инженерия только начинает внедряться в нашу реальность. Тем не менее уже достигнуты достаточно ощутимые результаты, которые качественно улучшают человеческую жизнь. Например, синтетическим путем получен такой жизненно важный препарат, как инсулин.

Роль молекулы днк в бактериальной клетке: просто о сложном

Особенности днк в клетках бактерий

Особенности кольцевой молекулы днк прокариотической клетки

Методы и прикладное значение исследования генома бактерий

Строение бактериальной клетки

Строение бактерий

Чем отличается бактериальная клетка от простейшего по структуре

Рост и размножение бактерий

Способы размножения истинных бактерий

Нуклеиновые кислоты и их роль в жизнедеятельности клетки. строение и функции днк

Не остались в стороне от научно-технического прогресса и крошки-бактерии. Дело в том, что основная часть работы проводилась именно на спиралях ДНК этих микроорганизмов.

В бактериях наследственная информация накапливалась в течение миллиардов лет. В переданных из поколения в поколение данных практически нет изменений. Бактериальные плазмиды можно перенести из одной молекулы в другую, не исказив исходных данных. Так, гены, отвечающие за устойчивость к антибиотикам, при внедрении в микрофлору кишечника значительно увеличивают ее жизнеспособность в неблагоприятных условиях.

Одним из феноменальных достижений генной инженерии стал синтез противовирусного препарата «Интерферон». Человеческий организм выделяет этот белок при попадании в него вирусной инфекции. Но при осложненном течении заболевания естественного интерферона может быть недостаточно. И тогда на помощь человеку придет синтезированная форма препарата.

Запустить «Интерферон» в массовое производство помогли именно бактерии. Посудите сами: из одного литра бактериальной культуры получается такое количество препарата, на которое бы потребовались тысячи литров человеческой крови.

Разработки генных инженеров идут дальше. Уже проводятся работы по конструированию генов, носящих противоопухолевый код. Генная терапия применяется при лечении наследственных заболеваний.

Не обделили своим вниманием ученые и сельское хозяйство. Проводятся работы по созданию новых кормовых культур, которые, например, увеличивают надои молока

Разработана вакцина, которая не дает возможности вирусу герпеса атаковать поголовье домашнего скота и свести на нет все усилия животноводов.

И во многом своими достижениями человек обязан крошечным бактериям. Невидимые помощники оказывают неоценимую услугу человечеству в борьбе с такими подлинными трагедиями, как недостаток пищи или заболевания, калечащие и уничтожающие людей.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Внехромосомные элементы наследственности прокариотов

Помимо хромосом, в геном бактерий входят плазмиды и мобильные генетические элементы:

  • транспозоны – нуклеотидные последовательности, несущие генетическую информацию; способны перемещаться с хромосомы на плазмиду;
  • is-последовательности – небольшие по размеру и наиболее простые элементы, по частоте встраивания сопоставимы со спонтанной мутацией, осуществляют горизонтальный перенос.

Эти элементы клетки прокариотов также представлены молекулами ДНК со своими специфическими признаками и являются частью наследственного материала микроба.

Экспрессия в клетках бактерий рекомбинантных днк

Микробиология, изучая геном клетки бактерии, установила, что эти внехромосомные факторы наследования не являются жизненно необходимыми для микроорганизмов, так как не содержат информацию о синтезе ферментов, задействованных в метаболизме бактерии.

Благодаря информации, которую несут плазмиды и мигрирующие генетические элементы, микробы обладают определенными свойствами. К примеру, антибиотической резистентностью, способностью к синтезу гемолизина и бактериоцина.

Плазмиды бактериальной клетки выполняют две функции:

  • регуляторную – компенсация нарушений ДНК хромосомы за счет плазмидного репликона;
  • кодирующую – внесение и сохранение в клетке бактерии новой информации, что проявляется в приобретенных признаках.

Свойства любого организма, будь то человек или бактерия, определяются совокупностью генов – генотипом. В случае же бактерий значение терминов «генотип» и «геном» фактически идентично.

Если геном – это совокупность наследственного материала клетки, то генотипом называют генетический материал – результат объединения геномов родительских половых клеток. Клетка человека, к примеру, будет обладать двойным генетическим набором, полученным от родителей.

Бактериальная клетка размножается прямым делением, и геном дочерней и материнской клетки изначально идентичны. Поэтому и понятия «генотип» и «геном» для бактериальной клетки практически синонимы.

Выявление нуклеоида при помощи электронного микроскопа

Существует 2 способа подготовки препарата для исследования нуклеоида под электронным микроскопом:

  • ультратонкий срез;
  • срез замороженной бактерии.

На электронных микрофотографиях ультратонкого среза бактерии нуклеоид имеет вид состоящей из тонких нитей плотной сетчатой структуры, которая выглядит светлее окружающей цитоплазмы.

Экспрессия в клетках бактерий рекомбинантных днк

На срезе замороженной бактерии после иммуноокрашивания нуклеоид выглядит как кораллоподобная структура с плотной сердцевиной и тонкими проникающими в цитоплазму выступами.

На электронных фотографиях нуклеоид бактерий чаще всего занимает центральную часть клетки и имеет меньший объем, нежели в живой клетке. Это связано с воздействием химических реактивов, используемых для фиксации препарата.

В клетках бактерий днк

Днк бактериальная

Неклеточные формы жизни. вирусы и бактериофаги

Бактерии

Особенности днк в клетках бактерий

Особенности кольцевой молекулы днк прокариотической клетки

Строение бактериальной клетки

Чем отличается бактериальная клетка от простейшего по структуре

Рост и размножение бактерий

В клетках бактерий днк

Методы окраски

В большинстве случаев для визуализации нуклеоида методом световой микроскопии используют следующие способы окраски бактерий:

  • по Романовскому-Гимзе;
  • метод Фельгена.

При окрашивании по Романовскому-Гимзе бактерии предварительно фиксируются на предметном стекле метиловым спиртом, а затем в течение 10-20 минут пропитываются красителем из равной смеси азура, эонина и метиленового синего, растворенных в метаноле. В результате нуклеоид становится фиолетовым, а цитоплазма – бледно-розовой. Перед микроскопией краска сливается, а препарат промывается дистиллятом и высушивается.

В методе Фельгена применяется слабо кислотный гидролиз. В результате освобожденная дезоксирибоза переходит в альдегидную форму и взаимодействует с фуксинсернистой кислотой реактива Шиффа. В итоге нуклеоид становится красным, а цитоплазма приобретает синий цвет.

ДНК- и РНК-содержащие вирусы

В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.

РНК-содержащие вирусы

Одноцепочные РНК-содержащие вирусы подразделяются на:

1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов вы­полняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).

2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

К РНК-содержащим вирусам относятся более  вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.

ДНК-содержащие вирусы

Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).

ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.

Особенности нуклеоида бактерий

Обычно нуклеоид занимает центральный участок бактериальной клетки и ориентирован вдоль ее оси. Объем этого компактного образования не превышает 0,5 мкм 3 , а молекулярная масса варьирует от 1×10 9 до 3×10 9 дальтон. В определенных точках нуклеоид связан с клеточной мембраной.

В состав нуклеоида бактерий входят три компонента:

  • ДНК.
  • Структурные и регуляторные белки.
  • РНК.

ДНК имеет хромосомную организацию, отличную от эукариотической. Чаще всего нуклеоид бактерий содержит одну хромосому или несколько ее копий (при активном росте их количество достигает 8 и более). Этот показатель варьирует в зависимости от вида и стадии жизненного цикла микроорганизма. Некоторые бактерии имеют несколько хромосом с разным набором генов.

В центре нуклеоида ДНК укомплектована достаточно плотно. Эта зона недоступна для рибосом, ферментов репликации и транскрипции. Напротив, дезоксирибонуклеиновые петли периферической области нуклеоида напрямую контактируют с цитоплазмой и представляют собой активные участки бактериального генома.

Экспрессия в клетках бактерий рекомбинантных днк

Количество белкового компонента в нуклеоиде бактерий не превышает 10 %, что примерно в 5 раз меньше, чем в хроматине эукариот. Большая часть белков ассоциирована с ДНК и участвует в ее структурировании. РНК представляет собой продукт транскрипции бактериальных генов, которая осуществляется на периферии нуклеоида.

Генетический аппарат бактерий является динамическим образованием, способным менять свою форму и структурную конформацию. В нем отсутствуют характерные для ядра эукариотической клетки ядрышки и митотический аппарат.

Структура молекулы ДНК

Нуклеиновые кислоты, как и белки, имеют первичную, вторичную и третичную структуру. Первичная структура ДНК – это последовательность нуклеотидных остатков в полинуклеотидных цепях.

Вторичная структура – пространственная конфигурация полинуклеотидных цепей ДНК

В формировании вторичной структуры полинуклеотидной цепи важное значение имеют водородные связи, которые возникают на основе принципа комплементарности, то есть дополнительности или соответствия между парами оснований: аденином и тимином, гуанином и цитозином (рис. 8)

Экспрессия в клетках бактерий рекомбинантных днк

Рис. 8. Водородная связь и вторичная структура ДНК

Функции днк в бактериальной клетке

Бактерии. строение бактериальной клетки. формы. фото

Бактерии: размножение, способы, рост, факторы роста. фото

Особенности генетики бактерий. - основы микробиологии

Днк бактериальная

Неклеточные формы жизни. вирусы и бактериофаги

Особенности днк в клетках бактерий

Бактерия – клетка без ядра

Методы и прикладное значение исследования генома бактерий

Новые открытия в строении клеток прокариот: что бактериальные клетки имеют в своем составе?

Иллюстрация принципа комплементарности.

Эти комплементарные пары способны образовывать между собой прочные водородные связи. Так, между аденином и тимином формируются две водородные связи, а между гуанином и цитозином – три водородные связи.

В 1953 году Джеймс Уотсон и Френсис Крик предложили пространственную модель структуры ДНК (рис. 9).

Экспрессия в клетках бактерий рекомбинантных днк

Рис. 9. Лауреаты Нобелевской премии «за создание пространственной модели ДНК»

Согласно этой модели, молекула ДНК представляет собой двухцепочечную правозакрученную спираль, состоящую из комплементарных друг другу антипараллельных цепей.

Эти цепи связаны друг с другом азотистыми основаниями. Если «раскрутить» молекулу ДНК, то она будет напоминать винтовую лестницу. Две цепочки – образованы остатками фосфорной кислоты и пентозы, а перекладины «лестницы» – азотистые основания, которые взаимодействуют друг с другом с помощью водородных связей.

Между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.

Вопрос-ответ

Что такое рекомбинантная ДНК и как она используется в бактериях?

Рекомбинантная ДНК — это молекула ДНК, созданная искусственным путем путем объединения генетического материала из различных источников. В бактериях она используется для экспрессии чуждых генов, что позволяет производить белки, необходимые для медицины, сельского хозяйства и биотехнологии, например, инсулин или вакцины.

Какие методы применяются для трансформации бактерий рекомбинантной ДНК?

Существует несколько методов трансформации, включая тепловой шок, электропорацию и микрочипирование. Тепловой шок включает кратковременное нагревание бактерий в присутствии рекомбинантной ДНК, что способствует проникновению ДНК в клетку. Электропорация использует электрические импульсы для создания временных пор в клеточной мембране, позволяя ДНК войти внутрь.

Как контролируется экспрессия генов в рекомбинантных бактериях?

Экспрессия генов в рекомбинантных бактериях контролируется с помощью промоторов и регуляторных элементов, которые могут быть активированы или подавлены в зависимости от условий окружающей среды. Это позволяет ученым точно регулировать уровень производства целевых белков, что важно для оптимизации процессов биосинтеза.

Советы

СОВЕТ №1

Изучите основные методы клонирования и экспрессии рекомбинантной ДНК, такие как ПЦР, лигирование и трансформация. Понимание этих процессов поможет вам лучше ориентироваться в технологии и избежать распространенных ошибок.

СОВЕТ №2

Обратите внимание на выбор подходящего вектора для экспрессии. Разные векторы имеют свои особенности, которые могут влиять на уровень и качество экспрессии целевого белка. Исследуйте доступные варианты и выбирайте тот, который лучше всего подходит для вашей цели.

СОВЕТ №3

Не забывайте о оптимизации условий культуры бактерий. Параметры, такие как температура, состав среды и время инкубации, могут значительно повлиять на выход целевого продукта. Экспериментируйте с этими условиями для достижения наилучших результатов.

СОВЕТ №4

Регулярно проводите контроль качества получаемого белка. Используйте методы, такие как SDS-PAGE и Вестерн-блоттинг, чтобы убедиться в правильной экспрессии и чистоте вашего продукта. Это поможет избежать проблем на более поздних стадиях исследования или производства.

Ссылка на основную публикацию
Похожие публикации