Глава 12. α-аминокислоты, пептиды и белки

Циклические аминокислоты

Предыдущая1234567891011121314Следующая

Аминокислоты, содержащие в составе молекулы ароматическое (бензольное) или гетероциклическое ядро, называются циклическими.

Ароматические аминокислоты.

Фенилаланин (α-амино-β-фенилпропионовая кислота) впервые обнаружен в гидролизате ростков люпина в 1879 г.

Очень распространенная аминокислота. В большом количестве обнаружена в составе гормона инсулина. Является основным субстратом, из которого образуются гормоны адреналин и тироксин.

Тирозин (α-амино-β-3-параоксифенилпропио-новая кислота) впервые выделен из гидролизата казеина в 1846 г. Входит в состав многих белков. Так же, как и фенилаланин, тирозин является источником биосинтеза гормонов адреналина, норадреналина и тироксина.

Гетероциклические аминокислоты.

Триптофан (α-амино-β-индолилпропионовая кислота) открыт в гидролизате казеина в 1901 г. Входит в состав многих белков в небольшом количестве. В животных тканях не синтезируется. В результате декарбоксилирования триптофана образуется триптамин — регулятор кровяного давления в животном организме:

Глава 12. α-аминокислоты, пептиды и белки

Гистидин (α -амино-β-имидазолилпропионовая кислота) обнаружен в белках спермы осетра в 1896г., в 1911 г.

Глава 12. α-аминокислоты, пептиды и белки

Недостаток гистидина в пище приводит к нарушениям мышечной деятельности, синтеза гемоглобина.

Остаток гистидина— имидазольное кольцо — входит в состав активных центров многих ферментов.

Составными частями белков являются также некоторые имино-кислоты, содержащие не аминную (—NH2), а иминную (>NH) группу

Глава 12. α-аминокислоты, пептиды и белки

Пролин (пирролидин-2-карбоновая кислота) получен из гидролизата казеина в 1901 г.

Обнаружен во всех белках. Особенно богаты пролином коллаген, казеин и белки проламины (до 15 %). Пролин входит в состав инсулина, грамицидина и др. Синтезируется в тканях.

При окислении пролина образуется оксипролин (4-оксипирролидин-2-карбоновая кислота), обнаруженный в гидролизате желатины в 1902 г. Является составной частью коллагена и эластина.

Из двадцати перечисленных аминокислот десять не синтезируются в организме человека и должны поступать вместе с пищей.

Они называются незаменимыми. Содержание в пище остальных аминокислот не обязательно, поскольку организм способен их синтезировать.

Врачи подчеркивают важность α-аминокислот, пептидов и белков для здоровья человека. Эти молекулы играют ключевую роль в строительстве тканей, поддержании иммунной функции и регуляции обмена веществ. Специалисты отмечают, что полноценное питание, содержащее все необходимые аминокислоты, способствует улучшению физического состояния и повышению жизненной энергии. Врачами также акцентируется внимание на том, что дефицит белка может привести к серьезным последствиям, включая ослабление иммунной системы и замедление восстановления после заболеваний. Кроме того, пептиды, как более короткие цепочки аминокислот, становятся все более популярными в медицине и косметологии благодаря своим регенеративным свойствам. Врачи рекомендуют следить за балансом этих веществ в рационе, чтобы поддерживать здоровье и активность на высоком уровне.

Белки, пептиды и аминокислоты - Фундамент Долголетия.Белки, пептиды и аминокислоты – Фундамент Долголетия.

Из Дополнительных материалов

При написании последовательности аминокислотных остатков в полипептидной цепи Международный союз теоретической и прикладной химии и Международный биохимический союз предложили пользоваться сокращенными названиями аминокислоты, состоящими обычно из первых трех букв полного названия соответствующей аминокислоты (см. таблицу). Использование интернациональной латинизированной стандартной системы символов и сокращений представляет большие преимущества с точки зрения сбора, обработки и отыскания научной информации, устранения ошибок при переводе текстов с иностранных языков и тому подобное. Унифицированные сокращенные названия химических соединений, в том числе и аминокислот, особенно важны не только в международном отношении, но и для применения внутри СССР, где научная литература издается на десятках языков, различных по алфавиту, лексике и начертанию специальных терминов и их сокращенных обозначений.

Сокращенные обозначения свободных аминокислот не следует употреблять в тексте работ, это допустимо только в таблицах, списках, схемах.

Там, где последовательность аминокислотных остатков в пептидной цепи известна, символы остатков пишут по порядку, соединяя их дефисами; та цепь или часть цепи, где последовательность соединения аминокислотных остатков неизвестна, заключается в круглые скобки, причем символы остатков аминокислоты разделяются запятыми. При написании линейных пептидов или белков на левом конце установленной последовательности (то есть на ее N-конце) ставится символ аминокислоты, несущей свободную аминогруппу, а на правом конце (на C-конце) — символ остатка аминокислоты, несущего свободную карбоксильную группу. Полипептидную цепь предпочтительнее изображать горизонтально, а не вертикально расположенной последовательностью. Символы аминокислоты обозначают природные (L-) формы, их антиподы — символом D-, который ставят непосредственно перед символом аминокислоты, не отделяя от него дефисом (например, Лей-DФен-Гли).

Символы менее распространенных в живой природе аминокислоты особо оговариваются в каждой публикации. Рекомендуется соблюдать лишь следующие принципы, например, гидроксиаминокислоты (оксиаминокислоты): гидроксилизин (оксилизин) — Hyl (Оли) и так далее; алло-аминокислоты: алло-изо лейцин — aile (аИле), алло-оксилизин — aHyl (аОли); нораминокислоты: норвалин —Nva (Нва), норлейцин — Nle (Нле) и т. д.

Таблица. Сокращенное написание символов аминокислот, наиболее распространенных в живой природе

Полное название аминокислоты

Международные символы

Символы, принятые в русских научных изданиях

Аланин

Ala

Ала

Аргинин

Arg

Apr

Аспарагин

Asn

Асн

Аспарагиновая кислота

Asp

Асп

Аспарагиновая кислота и л pi аспарагин (если
различие не установлено)

Asx

Асх

Валин

Val

Вал

Гидроксипролин

Hyp

Опр

Гистидин

His

Г ис

Глицин

Gly

Гли

Глутамин

Gin

Гли

Глутаминовая кислота

Glu

Глу

Глутаминовая кислота или глутамин (если различие не
установлено)

Glx

Глх

Изолейцин

lie

Иле

Лейцин

Leu

Лей

Лизин

Lys

Лиз

Метионин

Met

Мет

Пролин

Pro

Про

Серин

Ser

Сер

Тирозин

Туг

Тир

Треонин

Thr

T ре

Триптофан

Trp

Трп

(иногда

Три)

Фенилаланин

Phe

Фен

Цистеин

Cys

Цис

Классификация аминокислот

Характерные свойства отдельных Аминокислот определяются боковой цепью, то есть радикалом, стоящим у α-углеродного атома. В зависимости от строения этого радикала аминокислоты подразделяют на алифатические (к ним относится большинство аминокислот), ароматические (фенилаланин и тирозин), гетероциклические (гистидин и триптофан) и иминокислоты (см.), у которых атом азота, стоящий при α-углеродном атоме, соединен с боковой цепью в пирролидиновое кольцо; к ним относятся пролин и оксипролин (см. Пролин).

Аминокислоты

Цистеин | химия онлайн

Цистеин | химия онлайн

Аминокислоты. свойства аминокислот., калькулятор онлайн, конвертер

Классификация аминокислот | химия онлайн

Аминокислоты — большая медицинская энциклопедия

Слово цистеин - что такое цистеин? - значения слова, примеры употребления

Презентация на тему: "аминокислоты аминокислоты – соединения, содержащие карбоксильную (cooh) и аминогруппу (nh 2 ) ". скачать бесплатно и без регистрации.

Аминокислоты

Слово цистеин

По числу карбоксильных и аминных групп аминокислоты делят следующим образом.

Моноаминомонокарбоновые аминокислоты содержат одну карбоксильную и одну аминную группы; к ним относится большая часть аминокислот (их рI лежит ок. рН 6).

Моноаминодикарбоновые аминокислоты содержат две карбоксильные и одну аминную группы. Аспарагиновая и глутаминовая кислота (см.) обладают слабокислыми свойствами.

Диаминомонокарбоновые кислоты — аргинин (см.), лизин (см.), гистидин (см.) и орнитин — в водном растворе диссоциируют преимущественно как основания.

По химическому составу замещающих групп различают: оксиаминокислоты (содержат спиртовую группу) — серин и треонин (см.), серосодержащие аминокислоты (содержат в своем составе атомы серы) — цистеин, цистин (см.) и метионин (см.); амиды (см.) дикарбоновых аминокислот — аспарагин (см.) и глутамин (см.) и тому подобное Аминокислоты с углеводородным радикалом, например аланин, лейцин, валин и другие, придают белкам гидрофобные свойства; если радикал содержит гидрофильные группы, как, например, у дикарбоновых аминокислот, они сообщают белку гидрофильность.

Помимо уже упомянутых аминокислот (см. таблицу и соответствующие статьи), в тканях человека, животных, растений и у микроорганизмов найдено еще более 100 аминокислот, многие из которых играют важную роль в живых организмах. Так, орнитин и цитруллин (относятся к диаминокарбоновым аминокислотам) играют важную роль в обмене веществ, в частности в синтезе мочевины у животных (см. Аргинин, Мочевина). В организмах найдены высшие аналоги глутаминовой кислоты: α-аминоадипиновая кислота с б атомами углерода и α-аминопимелиновая кислота с 7 атомами углерода. В составе коллагена и желатина найден оксилизин:

Глава 12. α-аминокислоты, пептиды и белки

имеющий два асимметрических атома углерода. Из алифатических моноаминомонокарбоновых аминокислот встречаются α-аминомасляная кислота, норвалин (α-аминовалериановая кислота) и норлейцин (α-ампнокапроновая кислота). Последние две получены синтетически, но не встречаются в составе белков. Гомосерин (α-амино-γ-оксимасляная кислота) является высшим аналогом серина. Соответственно α-амино-γ-тиомасляная кислота, или гомоцистеин, является подобным аналогом цистеина. Две последние аминокислоты наряду с лантионином:

[НООС—CH(NH2)—СН2—S-CH2—CH(NH2)—COOH]

и цистатионином:

[НООС—CH(NH2)—CH2—S—СН2—СН2—CH(NH2)—COOH]

принимают участие в обмене серосодержащих аминокислот 2,4-Диоксифенилаланин (ДОФА) является промежуточным продуктом обмена фенилаланина (см.) и тирозина (см.). Из тирозина образуется такая аминокислота, как 3,5-дийодтирозин — промежуточный продукт образования тироксина (см.). В свободном состоянии и в составе некоторых природных веществ встречаются аминокислоты, метилированные (см. Метилирование) по азоту: метилглицин, или саркозин [CH2(NHCH3) COOH], а также метилгистидин, метилтриптофан, метиллизин. Последний недавно обнаружен в составе ядерных белков — гистонов (см.). Описаны также ацетилированные производные аминокислот, в том числе ацетиллизин составе гистонов.

Помимо α-аминокислот в природе, главным образом в свободном виде и в составе некоторых биологически важных пептидов, встречаются Аминокислот, содержащие аминогруппу у других атомов углерода. К ним относятся β-аланин (см. Аланин), γ-аминомасляная кислота (см. Аминомасляные кислоты), играющая важную роль в функционировании нервной системы, δ-аминолевулиновая кислота, являющаяся промежуточным продуктом синтеза порфиринов. К аминокислотам относят также таурин (H2N—CH2—CH2—SO3H), образующийся в организме в процессе обмена цистеина.

Глава 12 о α-аминокислотах, пептидах и белках вызывает живой интерес у студентов и специалистов в области биохимии. Многие отмечают, что материал представлен доступно и логично, что облегчает понимание сложных концепций. Читатели подчеркивают важность α-аминокислот как строительных блоков белков и их роли в метаболизме. Пояснения о синтезе пептидов и структуре белков вызывают положительные отзывы, так как помогают связать теорию с практическими аспектами. Некоторые отмечают, что примеры из реальной жизни делают информацию более актуальной и запоминающейся. В целом, глава воспринимается как полезный ресурс для углубленного изучения темы.

ЛЕКЦИЯ 4. АМИНОКИСЛОТЫ, БЕЛКИЛЕКЦИЯ 4. АМИНОКИСЛОТЫ, БЕЛКИ

Библиография

Браунштейн А. Е. Биохимия аминокислотного обмена, М., 1949, библиогр.; Майстер А. Биохимия аминокислот, пер. с англ., М., 1961; Greenstein J. P. a. Winitz M. Chemistry of the amino acids, v. 1—3, N. Y.—L., 1961; Meister A. Biochemistry of the amino acids, v. 1—2, N. Y., 1965; Nivard R. J. Е. а. Тesser G. I. Amino acids and related compounds, Comprehens. Biochem., v. 6, p. 143, 1965, bibliogr.; Номенклатура биологической химии, пер. с англ., под ред. А. Е. Браунштейна, в. 1, с. 13 и др., М., 1968.

Гистохимические методы выявления Аминокислот в тканях

Лилли Р. Патогистологическая техника и практическая гистохимия, пер. с англ., М., 1969, библиогр.; Пирс Э. Гистохимия, пер. с англ., с. 73, М., 1962; Принципы и методы гистоцитохимического анализа и патологии, под ред. А. П. Авцына и др., Л., 1971, библиогр.

Аминокислоты. 1 часть. 11 класс.Аминокислоты. 1 часть. 11 класс.

Оптические свойства

Все α-аминокислоты, за исключением глицина (см.), имеют асимметрический атом углерода. Таким атомом всегда является 2-й, или α-углеродный, атом, все четыре валентности которого заняты различными группами. В этом случае возможны две стереоизомерные формы, являющиеся зеркальным отражением друг друга и несовместимые между собой подобно правой и левой руке. На схеме изображены два стереоизомера аминокислоты аланина в виде объемного изображения и соответствующей ему проекции на плоскости. Изображение слева условно принято считать левой конфигурацией (L), справа — правой конфигурацией (D). Такие конфигурации соответствуют лево- и правовращающему глицериновому альдегиду, который принят за исходное соединение при определении конфигурации молекул. Показано, что все природные аминокислоты, получаемые из гидролизатов белков, по конфигурации α-углеродного атома соответствуют L-ряду, то есть могут рассматриваться как производные L-аланина, в котором один водородный атом в метальной группе заменен на более сложный радикал. Удельное вращение плоскости поляризации света отдельных Аминокислот зависит как от свойств всей молекулы в целом, так и рН-раствора, температуры и других факторов.

Глава 12. α-аминокислоты, пептиды и белки

Удельное вращение важнейших аминокислот, их изоэлектрические точки и показатели констант кислотной диссоциации (рКа) представлены в табл. 2.

Таблица 2. Удельное вращение плоскости поляризации, кажущиеся константы кислотной диссоциации и изоэлектрические точки L-аминокислот при t° 25°
Аминокислота Удельное вращение Константы кислотной диссоциации Изоэлектрическая точка рI
водного раствора в 5 н. растворе соляной кислоты pK1 pK2 pK3
Алании +1,6 +13,0 2,34 9,69 6,0
Аргинин +21,8 +48,1 2,18 9,09 13,2 10,9
Аспарагин -7,4 +37,8 2,02 8,80 5,4
Аспарагиновая кислота +6,7 +33,8 1,88 3,65 9,60 2,8
Валии +6,6 33,1 2,32 9,62 6,0
Гистидин +59,8 +18,3 1,78 5,97 8,97 7,6
Глицин 2,34 9,60 6,0
Глутамин +9,2 +46,5 2,17 9,13 5,7
Глутаминовая кислота +17,7 +46,8 2,19 4,25 9,67 3,2
Изолейцин +16,3 +51,8 2,26 9,62 5,9
Лейцин -14,4 +21,0 2,36 9,60 6,0
Лизин +19,7 +37,9 2,20 8,90 10,28 9,7
Метионин -14,9 +34,6 2,28 9,21 5,7
Оксипролин -99,6 -66,2 1,82 9,65 5,8
Пролин -99,2 -69,5 1,99 10,60 6,3
Серии -7,9 +15,9 2,21 9,15 5,7
Тирозин -6,6 -18,1 2,20 9,11 10,07 5,7
Треонин -33,9 -17,9 2,15 9,12 5,6
Триптофан -68,8 +5,7 2,38 9,39 5,9
Фенилаланин -57,0 -7,4 1,83 9,13 5,5
Цистеин -20,0 +7,9 1,71 8,33 10,78 5,0
Цистин 2,01 8,02 pK4 = 8,71 5,0

Раньше оптические антиподы L-аминокислот, то есть аминокислоты D-ряда, называли «неприродными», однако в наст, время аминокислоты D-ряда обнаружены в составе некоторых бактериальных продуктов и антибиотиков. Так, капсулы спороносных бактерий (Вас. subtilis, В. anthracis и другое) в значительной мере состоят из полипептида, построенного из остатков D-глутаминовой кислоты. D-аланин и D-глутамидовая кислота входят в состав мукопептидов, образующих клеточные стенки ряда бактерий; валин, фенилаланин, орнитин и лейцин D-ряда содержатся в составе грамицидинов и многих других пептидов — антибиотиков и тому подобное Стереоизомерные аминокислоты существенно различаются по своим биологическим свойствам, они атакуются ферментами, специфическими только к определенной оптической конфигурации, не заменяют или лишь частично заменяют друг друга в обмене веществ и тому подобное D-изомеры аланина (см.), лейцина (см.), серина (см.), триптофана (см.) и валина (см.) очень сладкие, тогда как L-стереоизомеры аланина и серина умеренно сладкие, триптофана — безвкусны, а лейцина и валина — горьковаты. Характерный «мясной» вкус L-глутаминовой к-ты отсутствует у D-формы. Синтетические аминокислоты обычно представляют собой рацематы, то есть смесь равных количеств D- и L-форм. Их обозначают как DL-аминокислоты. При помощи некоторых специальных реактивов или обработки некоторыми ферментами синтетические аминокислоты можно разделить на D- и L-формы или получить только один желаемый стереоизомер.

Моноаминомонокарбоновая кислота

Теория Сено и Ямабе носит более общий характер, поскольку рассматривает не только сорбцию моноаминомонокарбоновых кислот на катионитах, но и сорбцию других групп аминокислот как на катионитах, так и на анионитах.

Химический состав их хотя и различен, но все же в них следует отметить преобладание моноаминомонокарбоновых кислот, и притом в большом количестве. Для кератинов характерно большое содержание цистина, не встречающегося в таком количестве ни в каком-либо другом белке.  

Постоянство коэффициентов активности в фазе ионита для резинатов наблюдается на обычных, стандартных синтетических полимерных сульфокатионитах с простейшими моноаминомонокарбоновыми кислотами в качестве противоионов.

Для таких ионитов и противоионов с использованием разбавленных растворов ( ух и у2 постоянны) можно оценить коэффициенты активности fi и у2 также как постоянные.  

Ориентировку в хроматограммах, полученных при применении различных двумерных систем растворителей, мы облегчим, если соединим положения алифатических моноаминомонокарбоновых кислот линией.  

Добавление кислот или оснований сильно сказывается на величинах RF для дикарбоновых и основных аминокислот и мало сказывается на движении моноаминомонокарбоновых кислот.

Эти изменения связаны с изменением степени диссоциации указанных аминокислот.  

В то время как из метилового эфира свободной аминокислоты и из эфиров дипептидов предпочтительно образуются дикетопиперазины, некоторые эфиры трипептидов моноаминомонокарбоновых кислот обнаруживают ярко выраженную склонность к поликонденсации.  

Дан обзор теоретических представлений о механизме сорбции аминокислот на ионитах.

Рассмотрена теория сорбции моноаминомонокарбоновых кислот на катионитах в Н — форме, диаминомонокарбоновых кислот на катионитах в Н — форме и анионите в ОН-форме, моноамино-дикарбоновых кислот на катионитах в Н — форме, и анионитах в ОН-форме. Приведены соответствующие уравнения изотерм сорбции.  

Таким путем отделяют растворимые в указанных спиртах моноаминомонокарбоновые кислоты и пролин от дикарбоновых кислот и гексоновых оснований.

Химические свойства аминокислот обусловлены количеством и взаиморасположением входящих в их состав функциональных групп. Например, в результате взаимного погашения свойств карбоксильных и аминных групп моноаминомонокарбоновые кислоты — вещества практически нейтральные. Но поскольку в реакциях эти кислоты могут проявлять и кислотные, и основные свойства, они являются амфотерными электролитами.

Гетероциклические аминокислоты

Аминокислоты аминокислоты – соединения, содержащие карбоксильную (cooh) и аминогруппу (nh 2 ). 23.05.2014 1. - презентация

Цистеин | химия онлайн

Аминокислоты. свойства аминокислот., калькулятор онлайн, конвертер

Классификация аминокислот | химия онлайн

Аминокислоты — большая медицинская энциклопедия

Слово цистеин - что такое цистеин? - значения слова, примеры употребления

Цистеин (2-амино-3-меркаптопропионовая кислота; сys) - аквилон - хроматография

Презентация на тему: "аминокислоты аминокислоты – соединения, содержащие карбоксильную (cooh) и аминогруппу (nh 2 ) ". скачать бесплатно и без регистрации.

Аминокислоты. свойства аминокислот.

Экспериментальные исследования изотерм сорбции аминокислот Н — формой сульфокатионитов, выполненные нами, полностью подтвердили справедливость приведенных выше уравнений. В работе были использованы следующие аминокислоты: глицин, 6-аминопенициллановая кислота ( 6 — АПК) и моноамид аспарагиновой кислоты ( аспарагин), который в этих условиях ведет себя как моноаминомонокарбоновая кислота.

Связи между этими параллельными слоями осуществляются через остатки R аминокислот. Между этими остатками могут существовать в принципе силы электростатического притяжения между группами С00 — и NHjJ, водородные связи между спиртовыми и фенолышми НО группами оксиаминокислот и вандерваальсовы связи между неполярными цепями R моноаминомонокарбоновых кислот.

Все эти силы, несомненно, способствуют устойчивости волокна.  

В зависимости от наличия циклов в молекулах аминокислот все аминокислоты делят на ациклические, или алифатические, и циклические. В зависимости от числа амин-ных и карбоксильных групп в молекуле ациклические аминокислоты делятся на три группы: 1) моноаминомонокарбо-новые кислоты, 2) моноаминодикарбоновые кислоты и 3) диам и н омонокарбоновые кислоты.

Электрохимические свойства

Обладая амфотерными свойствами (см. Амфолиты), аминокислоты в растворах диссоциируют как по типу кислотной диссоциации (отдавая ион водорода и заряжаясь при этом отрицательно), так и по типу щелочной диссоциации (присоединяя Н-ион и освобождая ион гидроксила), приобретая при этом положительный заряд. В кислой среде усиливается щелочная диссоциация аминокилот и происходит образование солей с анионами кислот. В щелочной среде, наоборот, аминокислоты ведут себя как анионы, образуя соли с основаниями. Установлено, что Аминокислоты в растворах практически полностью диссоциируют и находятся в виде амфотерных (биполярных) ионов, называемых также цвиттерионами или амфиионами:

Глава 12. α-аминокислоты, пептиды и белки

В кислой среде амфотерный ион присоединяет ион водорода, подавляющий кислотную диссоциацию, и превращается в катион; в щелочной среде с присоединением иона гидроксила подавляется щелочная диссоциация, и биполярный ион становится анионом. При определенном значении рН среды, неодинаковом для разных аминокислот, степень кислотной и щелочной диссоциации для данной аминокилоты уравнивается, и в электрическом поле аминокислот не движется ни к катоду, ни к аноду. Это значение рН называют изоэлектрической точкой (pI), которая тем ниже, чем больше у данной аминокилоты выражены кислотные свойства, и тем выше, чем у аминокислоты больше выражены основные свойства (см. Изоэлектрическая точка). При рI растворимость аминокислоты становится минимальной, в соответствии с чем ее легче осадить из раствора.

Аминокислоты Образование внутренних солей (биполярных ионов)

В водных растворах аминокислоты существуют в виде равновесных смесей молекул и биполярных ионов, которые в кислой среде переходят в катионную форму, а в щелочной среде — в анионную форму.

Глава 12. α-аминокислоты, пептиды и белки

При образовании внутренних солей моноаминомонокарбоновых кислот характер среды не изменяется.

Поэтому эти аминокислоты называются нейтральными. внутренних солей таких кислот

При добавлении кислоты (Н+) карбоксилат-ион протонируется и остается только положительный заряд на группе -NH

Глава 12. α-аминокислоты, пептиды и белки

При образовании внутренних солей моноаминодикарбоновых кислот образуется избыток ионов водорода, поэтому водные растворы этих кислот имеют рН

внутренних солей кислых аминокислот

Глава 12. α-аминокислоты, пептиды и белки

При образовании внутренних солей диаминомонокарбоновых кислот образуется избыток гидроксид-ионов, поэтому их водные растворы имеют рН > 7.

Такие аминокислоты называются основными. внутренних солей основных аминокислот

4. Образование пептидов

При взаимодействии карбоксильной группы одной молекулы аминокислоты и аминогруппы другой молекулы аминокислоты образуются

Глава 12. α-аминокислоты, пептиды и белки

При взаимодействии двух разных аминокислот образуется смесь четырех дипептидов; например:

Глава 12. α-аминокислоты, пептиды и белки

Дипептид, присоединяя еще одну молекулу аминокислоты, может образовать .

Аналогично из трипептида можно получить и т. д.

5. Образование производных по карбоксильной группе

Как и карбоновые кислоты, аминокислоты могут образовывать сложные эфиры, хлорангидриды и др. Например:

Глава 12. α-аминокислоты, пептиды и белки
Глава 12. α-аминокислоты, пептиды и белки

Способы получения

Глава 12. α-аминокислоты, пептиды и белки

Добро пожаловать

Эта реакция на аминокислоту гистидин основана на взаимодействии гистидина с диазобензолсульфоновой кислотой с образованием соединения вишнево-красного цвета.

Реакцию диазотирования осуществляют при взаимодействии кислого раствора сульфаниловой кислоты с нитритом натрия. При этом образуется диазобензолсульфоновая кислота:

Глава 12. α-аминокислоты, пептиды и белки

Эта кислота, взаимодействуя с гистидином, дает соединение вишнево-красного цвета:

Глава 12. α-аминокислоты, пептиды и белки

Описание опыта.

В пробирку наливают 1 мл 1%-го раствора сульфаниловой кислоты в 5%-м растворе соляной кислоты. Затем прибавляют 2 мл 0,5%-го раствора нитрита натрия, сильно встряхивают и немедленно приливают 2 мл 0,01%-го раствора гистидина. После перемешивания содержимого пробирки сразу приливают 6 мл 10%-го раствора соды.

Аминокислоты

Слово цистеин

Цистеин | химия онлайн

Классификация аминокислот | химия онлайн

Аминокислоты — большая медицинская энциклопедия

Слово цистеин - что такое цистеин? - значения слова, примеры употребления

Цистеин (2-амино-3-меркаптопропионовая кислота; сys) - аквилон - хроматография

Презентация на тему: "аминокислоты аминокислоты – соединения, содержащие карбоксильную (cooh) и аминогруппу (nh 2 ) ". скачать бесплатно и без регистрации.

Аминокислоты. свойства аминокислот.

Слово цистеин

Появляется интенсивная вишнево-красная окраска.

Дата добавления: 2015-07-21; просмотров: 603; Опубликованный материал нарушает авторские права?

| Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Применение аминокислот

Аминокислоты находят широкое применение в медицине и других областях. Различные наборы аминокислоты и гидролизаты белков, обогащенные отдельными аминокислотами, применяются для парентерального питания при операциях, заболеваниях кишечника и нарушениях всасывания. Некоторые аминокислоты оказывают специфический терапевтический эффект при различных расстройствах. Так, метионин применяют при ожирении печени, циррозах и тому подобное; глутаминовая и γ-амино-масляная кислоты дают хороший эффект при некоторых заболеваниях центральной нервной системы (эпилепсии, реактивных состояниях и так далее); гистидин иногда применяют для лечения больных гепатитами, язвенной болезнью желудка и двенадцатиперстной кишки.

Аминокислоты применяют также в качестве добавок к пищевым продуктам. Практически наиболее важны добавки лизина, триптофана и метионина к пищевым продуктам, неполноценным по содержанию этих аминокислот. Добавка глутаминовой к-ты и ее солей к ряду продуктов придает им приятный мясной вкус, что часто используют в кулинарии. Помимо питания человека и применения аминокислоты в пищевой промышленности, их используют для кормления животных, для приготовления культуральных сред в микробиологической промышленности и как реактивы.

См. также Азотистый обмен, Обмен веществ и энергии, Окисление биологическое.

Гистохимические методы выявления аминокислот в тканях

Реакции выявления аминокислоты в тканях основаны главным образом на выявлении аминогрупп (NH2-), карбоксильных (СООН—), сульфгидрильных (SH-) и дисульфидных (SS-) групп. Разработаны методы выявления отдельных аминокислот (тирозина, триптофана, гистидина, аргинина). Идентификация аминокислоты проводится также при помощи блокирования тех или иных групп. Следует иметь в виду, что гистохимик имеет дело, как правило, с денатурированным белком, поэтому результаты гистохимических методов не всегда сопоставимы с биохимическими.

Для выявления SH- и SS-групп лучшей считается реакция с 2,2′-диокси — 6,6′ — динафтилдисульфидом (ДДД), основанная на образовании нафтил дисульфид а, связанного с белком, содержащим SH-группы. Для развития окраски препарат обрабатывают солью диазония (прочный синий Б или прочный черный К), которая соединяется с нафтилдисульфидом, образуя азокраситель, окрашивающий участки локализации SH-и SS-групп в тканях в оттенки от розового до сине-фиолетового. Метод позволяет проводить количественные сопоставления. Ткань фиксируется в жидкости Карнуа, Буэна, в формалине. Лучшие результаты дает 24-часовая фиксация в 1% растворе трихлоруксусной кислоты на 80% спирте с последующей промывкой в серии спиртов возрастающей концентрации (80, 90, 96%), затем производится обезвоживание и заливка в парафин. Для реакции необходимы реактивы: ДДД, соль диазония, 0,1 М веронал-ацетатный буферный раствор (рН 8,5), 0,1 М фосфатный буферный раствор (рН 7,4), этиловый спирт, серный эфир.

α-Аминокислоты выявляются с помощью нингидрин-реактива Шиффа. Метод основан на взаимодействии нингидрина с аминогруппами (NH2-); образующийся при этом альдегид выявляется реактивом Шиффа. Материал фиксируется в формалине, безводном спирте, жидкости Ценкера, заключается в парафин. Необходимы реактивы: нингидрин, реактив Шиффа, этиловый спирт. Ткани, содержащие α-аминогруппы, окрашиваются в розовато-малиновые оттенки. Специфичность реакции, однако, является спорной, так к окислению нингидрином могут подвергаться не только α-аминокислоты, но и другие алифатические амины.

Тирозин, триптофан, гистидин выявляются тетразониевым методом. Соли диазония в щелочной среде находятся в виде гидроксидов диазония, присоединяющихся к названным аминокислотам. Для усиления цветной окраски срезы обрабатывают β-нафтолом или Н-кислотой. Фиксация формалином, жидкостью Карнуа. Необходимые реактивы: тетразотированный бензидин или лучше прочный синий Б, 0,1 М вероналацетатный буферный раствор (рН 9,2); 0,1 н. HCl, Н-кислота или β-нафтол. В зависимости от реактива срезы окрашиваются в фиолетово-синий или коричневый цвет. При оценке результатов нужно иметь в виду возможность присоединения к гидроксиду диазония фенола и ароматических аминов. Для дифференцировки аминокислот применяют контрольные реакции.

Вопрос-ответ

Какие аминокислоты входят в состав природных белков и пептидов?

Кислота, глутаминовая кислота, аспарагин, глутамин, – незаменимые (не могут синтезироваться в организме и должны поступать с пищей), их 8: валин, лейцин, изолейцин, треонин, лизин, метионин, фенилаланин, триптофан, – полузаменимые (синтезируются в организме, но в недостаточном количест- ве): аргинин и гистидин.

Какова связь между аминокислотами, пептидами и белками?

Молекула белка состоит из длинной цепочки этих аминокислот, каждая из которых связана со своей соседкой ковалентной пептидной связью (рисунок 3-1). Поэтому белки также известны как полипептиды. Каждый тип белка имеет уникальную последовательность аминокислот, абсолютно одинаковую от одной молекулы к другой.

Что такое пептиды и аминокислоты?

Пептиды представляют собой короткие цепочки аминокислот. Аминокислоты являются основными строительными блоками белков и других различных типов органических молекул. Пептиды отличаются от белков тем, что они намного короче и не имеют такого же типа вторичных складчатых структур.

Что такое белки и пептиды?

Белки и пептиды идентичны по своей химической природе и отличаются только длинной аминокислотной цепи: более 50 аминокислот – белок, менее 50 аминокислот – пептид.

Советы

СОВЕТ №1

Изучите основные функции α-аминокислот в организме. Понимание их роли в синтезе белков, метаболизме и других биохимических процессах поможет вам лучше осознать важность этих молекул для здоровья и физического состояния.

СОВЕТ №2

Обратите внимание на источники белка в вашем рационе. Включение разнообразных источников, таких как мясо, рыба, яйца, бобовые и орехи, обеспечит поступление всех необходимых аминокислот, включая незаменимые.

СОВЕТ №3

Изучите влияние пептидов на здоровье. Пептиды, состоящие из коротких цепочек аминокислот, могут иметь различные биологические эффекты, включая улучшение иммунной функции и ускорение восстановления после тренировок.

СОВЕТ №4

Не забывайте о значении белков в спортивном питании. Если вы занимаетесь спортом, важно правильно рассчитывать потребление белка для оптимизации восстановления и роста мышечной массы. Консультация с диетологом может помочь вам в этом.

Ссылка на основную публикацию
Похожие публикации